Ontological Models and Set Theory. An Interpretation of "Russell's Paradox"
Main Article Content
Abstract
In the antinomy known as Russell's paradox, a logical contradiction emerges that had already been mantanined by sophistry in the face of the ontological discourse that has founded Western philosophy. We argue, on the basis of a study of the logic underlying Cantor's set theory, whose ontological discourse supports infinite ontic variations, that the antinomy arises if consistency and completeness, which belong to a formal logical model inspired by the Aristotelian principle of non-contradiction, are admitted as truth conditions. This interpretation is confirmed by a brief analysis of Russell's theory of types.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Publications Service of the University of Extremadura (the publishing house) retains the economic rights (copyright) of the works published in the Anuario de la Facultad de Derecho. Universidad de Extremadura.. The reuse of the content is allowed under a license:
![]()
CC BY
Recognition
This license allows others to distribute, remix, tweak and build upon your work, even for commercial purposes, as long as you are acknowledged as the author of the original creation. This is the most helpful license offered. The maximum dissemination and use of the materials subject to the license are recommended.
For more information, see the following links:
References
Cellucci, Carlo. 1998. Le ragioni della logica. Bari: Laterza
Berti, Enrico. 1968. “Il valore «teologico» del principio di non contraddizione nella metafisica aristotelica”. Rivista di Filosofia Neo-Scolastica 60 (1): 224-252.
Enrico Berti. 1969. “Sulla formulazione aristotelica del principio di non contraddizione: Discussione con Emanuele Severino”. Rivista di Filosofia Neo-Scolastica 60 (1): 9-16.
Berti, Enrico. 1987. Contraddizione e dialettica negli antichi e nei moderni. EPOS
Berti, Enrico. 1996. Reconsiderations sur l’intellection des ‘indivisibles’. En Aristote. Corps et âme. Études sur le De Anima, P editado por Gilbert Romeyer-Dherbey y Cristina Viano, Vrin.
Berti, Enrico. 2004. Intellezione e dialettica in Aristotele, Metaph. IX 10. En Aristotele. Dalla dialettica alla filosofia prima, con saggi integrativi. Bompiani.
Carnap, Rudolf. 1935. Philosophy and Logical Syntax. Kegan Paul.
De Nigris, Francesco. 2022. “Quanta continua y discursividad del entendimiento (I)”. En Sobre el problema del continuo en la filosofia de immanuel kant. Herder.
Fronterotta Francesco. 2016. “Il significato del verbo νοεῖν in De anima III 4 77”. En International Aristotle studies 8, Il Noûs di Aristotele, editado por Giovanna Sillitti, Fabio Stella y Francesco Fronterotta. Academia Verlag.
Hamlyn, D. W. 1976. “Aristotelian Epagoge”. Phronesis 21 (2): 167-184.
Llamas, Vicente. 2022. “De univocatione entis: revisión basal de una ontología dinamicista”. Cauriensia 17: 213-242. https://doi.org/10.17398/2340-4256.17.213
Marías. Julián. 1970. Nuevos ensayos de teoría. Tomo VIII Obras. Revista de Occidente.
Modrak, Debora, K.W. 2001, Aristotle’s Theory of Language and Meaning. Cambridge University Press.
Popper Karl 2021. Conjectures and Refutations. The Growth of Scientific Knowledge. Basic Book publisher.
Ramsey, Frank. 1931. “The Foundations of Mathematics”. En The Evolution of Mathematics and other logical Essays. Kegan Paul.
Rivetti Barbó, Francesca. 1957. Le antinomie concettuali ed il paradosso di Russell. Rivista di Filosofia Neo-Scolastica 49 (2): 312-322.
Russell, Bertrand. 1919. Introduction to Mathematical Philosophy. George Allen and Unwin Ltd, The Macmillan Co.
Russell, Bertrand. 2010. The Principles of Mathematics. Routledge.
Frege, Gottlob. 1893. 1903. Vol. I. Vol. II. Grundgesetze der Arithmetik. Verlag Von Hermann Pohle.
Zanatta, M. 1996. “Introduzione. Organon di Aristotele”. A cura di Marcello Zanatta. Volume primo, Categorie, Dell’Interpretazione, Analitici Primi. Torino: UTET.
Whitehead, Alfred North, Bertrand Russell. 1910, 1912, 1913. Principia Mathematica, 3 vols, Cambridge: Cambridge University Press; second edn, 1925 (Vol. 1), 1927 (Vols 2, 3); reimpreso como Principia Mathematica to *56, Cambridge: Cambridge University Press, 1962.